Part 1: Basic light shaders.

This is probably the most useful and common shader you’ll come across. The basic syntax is pretty straightforward:

textures/tutorial/shader1

{

qer_editorimage
textures/doomgiver/light1d

 {

 map $lightmap

 }

 {

 map textures/doomgiver/light1d

 blendFunc GL_DST_COLOR GL_ZERO

 }

 {

 map textures/doomgiver/light1dglow

 blendFunc GL_ONE GL_ONE

 }

}
textures/tutorial/shader1 <-- This format is standard for all shaders. When creating your own shader, replace ‘tutorial’ with a folder name of your choice. If you’re using custom textures, you might want to put them in a physical folder of the same name in gamedata/base. Replace ‘shader1’ with whatever you want your new shader to be called.

qer_editorimage
textures/doomgiver/light1d <-- This line is used only by the editor; it’s not absolutely necessary, but it prevents your shader from showing up as ‘texture not found’ in Radiant. You can use whatever texture you like for this; the most common is just the basic shader texture.

map textures/doomgiver/light1d <-- This is the basic shader texture (often used in the editorimage stage as well). In other words, it’s the texture you’re plugging into the shader to make it glow. This is the first stage.

map textures/doomgiver/light1dglow <-- This is the texture that tells JO which part of the shader will appear to glow. The brightness and color of the light in JO is dictated by the brightness and color of this texture. This is the second stage.

Part 2: Basic shaders that emit light.

textures/nar2/window2

{

q3map_lightimage
textures/doomgiver/light1dglow

qer_editorimage
textures/doomgiver/light1d

q3map_surfacelight
340

q3map_lightsubdivide
128

 {

 map $lightmap

 }

 {

 map textures/doomgiver/light1d

 blendFunc GL_DST_COLOR GL_ZERO

 }

 {

 map textures/doomgiver/light1dglow

 blendFunc GL_ONE GL_ONE

 }

}

A few more lines are needed to make the shader actually emit light on to the surrounding surfaces.

q3map_lightimage
textures/doomgiver/light1dglow <-- This texture is usually the same one used in the second stage. An average color is drawn from this texture and used to define the color of the light it emits. Alternatively, you can enter a numeric RGB value here:

q3map_lightrgb
.9803 .9843 1

The value of this color on a regular 255 point RGB scale is, for example, 250, 251, 255. Take each digit and divide it by 255 to get a normalized number for use in your shader.

q3map_surfacelight
340 <-- This is the strength of the emitted light. How it translates into JO depends on a number of factors, so you’ll have to experiment to get it to your liking.

q3map_lightsubdivide
128 <-- This line is necessary only if you’re using Q3MAP2 to compile your map. All light-emitting shaders do is create a series of small point lights (like the ones you’d place in Radiant) according to the values you enter. This tells the compiler how far apart to place them.

Part 3: implementing your shader in Radiant and JO.

The syntax of a shader goes in a .shader file (rename the extension of a .txt file), which in turn goes in the gamedata/base/shaders folder. Open shaderlist.txt, found in the same folder, and add the name of your .shader file to the list. Example:

...

sprites

system

test

text_crawl

tutorial

ui

yavin

zoom

...

...and that’s it. Open Radiant and you should see the name of your .shader in the texture menu. Be sure to include the /shaders folder in your .pk3 (with only your custom .shader) when you release it. Good luck.

